ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE MATERIALS SCIENCE AND MECHANICAL ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
FUNDAMENTALS OF ORGANIC MATERIALS AND APPLICATIONS	MSME-607	FALL-SPRING	3 + 0	3	10

One of the following Courses: General Chemistry, Organic Chemistry, Polymer Chemistry, Materials Science etc. (undergraduate level courses)

Туре	Selective			
Language	English			
Coordinator	Assoc. Prof. Hakan Usta			
Instructor	Assoc. Prof. Hakan Usta			
Additional Instructors/TAs	none			
Aim	Learning the fundamental principles of organic reactions and mechanisms and the detailed study of their applications in materials science and nanotechnology.			
Learning Outcomes	 Learning general types and chemical structures of organic molecules. Learning the fundamentals of organic molecules, functional groups, hybridization and bonding theories. Learning the types of organic reactions and gaining the ability to write reaction mechanisms in detail. 			
Course Content	 The Basics: Bonding and Molecular Structure Families of Carbon Compounds Acids and Bases: An Introduction to Organic Reactions/Mechanisms Nomenclature and Conformations of Alkanes and Cycloalkanes Stereochemistry: Chiral Molecules Ionic Reactions: Nucleophilic Substitution and Elimination Reactions 			

WEEKLY TOPICS AND PRELIMINARY STUDY						
Week	Topic	Preliminary Study				
1	The Basics: Bonding and Molecular Structure-I	The relevant articles from the literature				
2	The Basics: Bonding and Molecular Structure-II	The relevant articles from the literature				
3	The Basics: Bonding and Molecular Structure-III	The relevant articles from the literature				
4	Families of Carbon Compounds-I	The relevant articles from the literature				
5	Families of Carbon Compounds-II	The relevant articles from the literature				
6	Acids and Bases: An Introduction to Organic Reactions/Mechanisms-I	The relevant articles from the literature				
7	Acids and Bases: An Introduction to Organic Reactions/Mechanisms-II	The relevant articles from the literature				
8	Acids and Bases: An Introduction to Organic Reactions/Mechanisms-III	The relevant articles from the literature				
9	Midterm	The relevant articles from the literature				
10	Nomenclature and Conformations of Alkanes and Cycloalkanes-I	The relevant articles from the literature				
11	Nomenclature and Conformations of Alkanes and Cycloalkanes-II	The relevant articles from the literature				
12	Stereochemistry: Chiral Molecules-I	The relevant articles from the literature				
13	Stereochemistry: Chiral Molecules-II	The relevant articles from the literature				

14	Ionic Reactions: Nucleophilic Substitution and Elimination Reactions-I	The relevant articles from the literature
15	Ionic Reactions: Nucleophilic Substitution and Elimination Reactions-II	The relevant articles from the literature
16	Final Exam	

SOURCES						
Lecture Notes	Lecture slides					
Other Sources	 Course Textbook: "Organic Chemistry" by T. W. Graham Solomons, Wiley; 11th edition (January 17, 2013), ISBN-10: 1118133579. (Chapters 1-6) Additional Materials: "Organic Chemistry" by L. G. Wade, Pearson; 8th edition (January 6, 2012), ISBN-10: 0321768418. "General Chemistry: Principles and Modern Applications" by Ralph H. Petrucci, F. Geoffrey Herring, Jeffry D. Madura, Carey Bissonnette. 					

COURSE MATERIALS SHARING				
Documents	Lecture notes, slides and molecular model set			
Homeworks	Students will be given one homework each week			
Exams	1 Midterm and 1 Final Exam			

EVALUATION SYSTEM						
SEMESTER STUDY	NUMBER	CONTRIBUTION				
Midterm	1	20				
Homework	14	25				
Quiz	14	25				
SUB-TOTAL		70				
Contribution of Semester Study		70				
Contribution of Final Exam	1	30				
TOTAL		100				

Course Category	
Sciences and Mathematics	70%
Engineering	30%
Social Sciences	0%

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS						
İ	Description Overlife asking a		Contribution Level				
INO	Program Qualifications	1	2	3	4	5	
1	Accessing knowledge, evaluating and interpreting information by doing scientific research in the field of Materials Science and Mechanical Engineering					x	
2	Ability to use science and engineering knowledge for development of new methods in Materials Science and Mechanical Engineering					x	
3	To be able to understand and analyze materials by using basic knowledge on Materials Science and Mechanical Engineering					x	
4	Design and implement analytical, modeling and experimental research					x	
5	Solve and interpret the problems encountered in experimental research					x	
6	Considering scientific and ethical values during the collection and interpretation of data				X		
7	Integrating knowledge of different disciplines with the help of scientific methods, and completion and implementation of scientific knowledge using data			x			
8	To gain leadership ability and responsibility in disciplinary and interdisciplinary team works					x	
9	To be able to contribute to the solution of social, scientific and ethical problems encountered in the field of Materials Science and Mechanical Engineering					x	
10	To be able to define, interpret and create new information about the interactions between various discipline of Materials Science and Mechanical Engineering					x	

*Increasing from 1 to 5.

ECTS / WORK LOAD TABLE						
Activities	Number	Duration (Hours)	Total Work Load			
Course Length (includes exam weeks: 16x total course hours)	16	3	48			
Out-of-class Study Time (Pre-study, practice)	16	5	90			
Internet search, library work, literature search	16	4	64			
Presentation	7	3	21			
Homework	16	4	64			
Midterm	1	15	15			
Final Exam	1	20	20			
Total Work Load			322			
Total Work Load / 30			322/30			
Course ECTS Credit			10			